NaBH₄ at 90° K.: body-centred tetragonal, a = 4.353, c = 5.909 (Abrahams & Kalnajs (1954), a = 4.354 ± 0.005 , $c = 5.907 \pm 0.005$).

KBH₄ at 293° K.: face-centred cubic, a=6.722 (Abrahams & Kalnajs (1954), $a=6.7272\pm0.0005$). KBH₄ at 90° K.: face-centred cubic, $a=6.636\pm0.002$.

The results for NaBH₄ and KBH₄ at room temperature, and for NaBH₄ at low temperature, are in good agreement with previous measurements (Soldate, 1947; Abrahams & Kalnajs, 1954). Unlike its sodium analogue, KBH₄ at 90° K. shows no change in crystal structure beyond a lattice contraction. Stockmayer & Stephenson (1953) suggested that NaBH₄ may change from the cubic form at temperatures below the specific-heat anomaly (Johnston & Hallet, 1953) in order to reduce the repulsive energy between the hydrogen atoms. KBH₄, however, has a more open structure, owing to the larger size of the potassium ion, and remains cubic down to 90° K.

The authors thank the Department of Scientific and Industrial Research for a maintenance grant to one of them (P.T.F.).

References

ABRAHAMS, S. C. & KALNAJS, J. (1954). J. Chem. Phys. 22, 434.

DAVIS, W. D., MASON, L. S. & STEGEMAN, G. (1949).
J. Amer. Chem. Soc. 71, 2775.

HUME-ROTHERY, W. & STRAWBRIDGE, D. J. (1947). J. Sci. Instrum. 24, 89.

JOHNSTON, H. L. & HALLET, N. C. (1953). J. Amer. Chem. Soc. 75, 1467.

SOLDATE, A. M. (1947). J. Amer. Chem. Soc. 69, 987. STOCKMAYER, W. H. & STEPHENSON, C. C. (1953). J. Chem. Phys. 21, 1311.

Acta Cryst. (1954). 7, 605

The unit-cell dimensions of p-chlorobenzoic acid. By J.McC. Pollock and (Miss) I. Woodward, Department of Chemistry, Queen's University, Belfast, Northern Ireland

(Received 11 June 1954)

In the course of some X-ray investigations on p-chlorobenzoic acid, values of the unit-cell dimensions were found differing appreciably from those given by Toussaint (1951).

Seven reflexions chosen for their high Bragg angles from the three principal zones were recorded on a multiple-exposure camera of 14 cm. diameter (Ubbelohde, 1939). Film measurements were made to 0.002 cm. with a travelling microscope, and both α_1 and α_2 reflexions were measured on each film by two independent observers. Calibration was by a platinum substandard against silver $(\alpha=4.0775 \text{ Å})$ and the radiation employed was Cu $K\alpha$ $(\lambda\alpha_1=1.5405 \text{ Å})$, $\lambda\alpha_2=1.5443 \text{ Å})$. The planes used, together with their Bragg angles, are given in Table 1.

Table 1. Planes used

hkl	$\theta \alpha_1$	$ hetalpha_{f 2}$
13,5,0	75° 20·0′	75° 54·8′
$17, \overline{3}, 0$	78° 57·3′	79° 35·3′
870	83° 24·1′	84° 45·3′
$9\overline{7}0$	77° 15·36′	77° 56·73′
12,0,3	68° 32′	68° 56·9′
$15,0,\overline{3}$	75° 51·1′	76° 30·1′
$06\overline{3}$	71° 1·6′	71° 29·3′

The method of least squares was used to find a^* , b^* and γ^* from the (hk0) zone, and the remaining reciprocallattice parameters were then determined by solving the general equation for the triclinic system:

$$(2 \sin \theta)^2 = h^2 a^{*2} + k^2 b^{*2} + l^2 c^{*2} + 2k l b^* c^* \cos \alpha^* + 2l h c^* a^* \cos \theta^* + 2h k a^* b^* \cos \nu^*.$$

These parameters are given in Table 2, together with the unit-cell dimensions derived from them, the figures being

Table 2. Lattice parameters of p-chlorobenzoic acid at 18° C.

Reciprocal parameters for $\lambda \alpha_1$	Present work	Deviation from mean	Toussaint
a^* 0·10916 Å ⁻¹ b^* 0·24835 Å ⁻¹ c^* 0·40158 Å ⁻¹	a 14·190 Å b 6·213 Å c 3·852 Å	± 0.004 Å ± 0.001 Å ± 0.002 Å	14·39 Å 6·29 Å 3·86 Å
α* 88° 28′ β* 84° 36′ γ* 86° 56′	α 91° 15' β 95° 19' γ 92° 56'	$egin{array}{c} \pm 2' \ \pm 1' \ \pm 1' \end{array}$	91° 3 8′ 95° 18′ 92° 44′

the mean of the α_1 and α_2 calculations. The third column shows the deviation from their mean of the values calculated from the α_1 and α_2 observations. The estimated systematic errors are less than these. Toussaint's values are given for comparison.

References

TOUSSAINT, J. (1951). Acta Cryst. 4, 71. UBBELOHDE, A. R. (1939). J. Sci. Instrum. 16, 155.